UAV Trajectory Optimization for Data Offloading at the Edge of Multiple Cells

نویسندگان

  • Fen Cheng
  • Shun Zhang
  • Zan Li
  • Yunfei Chen
  • Nan Zhao
  • Richard Yu
  • Victor C. M. Leung
چکیده

In future mobile networks, it is difficult for static base stations (BSs) to support the rapidly increasing data services, especially for cell-edge users. Unmanned aerial vehicle (UAV) is a promising method that can assist BSs to offload the data traffic, due to its high mobility and flexibility. In this paper, we focus on the UAV trajectory at the edges of three adjacent cells to offload traffic for BSs. In the proposed scheme, the sum rate of UAV served edge users is maximized subject to the rate requirements for all the users, by optimizing the UAV trajectory in each flying cycle. The optimization is a mixed-integer nonconvex problem, which is difficult to solve. Thus, it is transformed into two convex problems, and an iterative algorithm is proposed to solve it by optimizing the UAV trajectory and edge user scheduling alternately. Simulation results are presented to show the effectiveness of the proposed scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mobile Edge Computing for Cellular-Connected UAV: Computation Offloading and Trajectory Optimization

This paper studies a new mobile edge computing (MEC) setup where an unmanned aerial vehicle (UAV) is served by cellular ground base stations (GBSs) for computation offloading. The UAV flies between a give pair of initial and final locations, during which it needs to accomplish certain computation tasks by offloading them to some selected GBSs along its trajectory for parallel execution. Under t...

متن کامل

Mobile Edge Computing via a UAV-Mounted Cloudlet: Optimal Bit Allocation and Path Planning

Unmanned Aerial Vehicles (UAVs) have been recently considered as means to provide enhanced coverage or relaying services to mobile users (MUs) in wireless systems with limited or no infrastructure. In this paper, a UAV-based mobile cloud computing system is studied in which a moving UAV is endowed with computing capabilities to offer computation offloading opportunities to MUs with limited loca...

متن کامل

A New Vision-Based and GPS-Signal-Independent Approach in Jamming Detection and UAV Absolute Positioning Assessment

The Unmanned Aerial Vehicles (UAV) positioning in the outdoor environment is usually done by the Global Positioning System (GPS). Due to the low power of the GPS signal at the earth surface, its performance disrupted in the contaminated environments with the jamming attacks. The UAV positioning and its accuracy using GPS will be degraded in the jamming attacks. A positioning error about tens of...

متن کامل

UAV-Aided Cellular Offloading: A Potential Solution to Hot-Spot Issue in 5G

In conventional terrestrial cellular networks, mobile terminals (MTs) at the cell edge often pose the performance bottleneck due to their long distances from the serving ground base station (GBS), especially in hotspot period when the GBS is heavily loaded. This paper proposes a new hybrid network architecture by leveraging the use of unmanned aerial vehicle (UAV) as an aerial mobile base stati...

متن کامل

UAV-Enabled Mobile Edge Computing: Offloading Optimization and Trajectory Design

With the emergence of diverse mobile applications (such as augmented reality), the quality of experience of mobile users is greatly limited by their computation capacity and finite battery lifetime. Mobile edge computing (MEC) and wireless power transfer are promising to address this issue. However, these two techniques are susceptible to propagation delay and loss. Motivated by the chance of s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018